THE CONVERSION VIA SOFTWARE OF A SIMD PROCESSOR INTO A MIMD PROCESSOR,

PS-2000, AN ARRAY PROCESSOR, BECOMES AHR, A GENERAL PURPOSE LISF MACEINE

Adolfo Guzmén N Miguel Gerzso ™

Abstract

In this paper a method is described which
takes a (pure) Lisp program and autamatically
decamposes it (automatic parallelization) into
several parts, one far each processor of a SIMD
architecture. Each of these parts is a different
execution flow—a different program—. The
execution of these different programs by a SIMD
architecture is the main theme of the paper.

The method has been developed in same detail
for the PS-2000, a SIMD Soviet multiprocessor,
making it behave like AHR, a Mexican MIMD multi-
microprocessor. Both the PS-2000 and AHR execute
2 pure Lisp program in parallel; the user or
programmer is not responsible for its decamposi-
tion intc n pieces, their synchronization,
scheduling, etc. All these chores are performed
by the system (hardware and software) instead.

In order to achieve simultanecus execution of
different programs in a SIMD processor, the method
uses a scheme of node scheduling (a node is a
primitive Lisp operation) and node exportation.

Summary
The general goal: autamatic parallelization of
one a.
Iet us define autamatic parallelization as the
automatic splitting (by the system, not by the
programmer) of a program into n parts, one for
each processor, such that this program executes
efficiently in a multiprocessor with n processors.
Automatic parallelization takes care not only of
(1) the subdivision into'n parts, but also of (2)
their synchronization, (3) scheduling, etc.
Clearly, responsibities for chores (1), 2),; (3).,
..., can be placed upon the programer but this

¥ Spending his sabbatical year (1983-84) at:

Electrical Engineering Dept., CIEA-IPN; Nation-

al Polytechnic Institute. Apdo. 14-T740.

07000 México, D.F.

Permanent address: Computing Systs. Dept., IIMAS

UNAM; Nat'l. University of Mexico. Apdo. 20-726

01000 México D, F. :

p Institute for Control Sciences. Academy of
Sciences of the USSR. 65 Profosoyurnaya St.
117342 Moscow, USSR. ?

CH1929-9/83/0000/0037601.00 C 1983 IEEE

3

Kemer B. Norkin p S. Y. Vilenkin ¢

will reduce by much the efficiency of the pro-
grammer. Automatic parallelization is a good goal
to achieve.

Achieving the goal using a MIMD architecture.
Using pare Lisp (an applicative language), the AHR
machine [3,4] shows how to achieve automatic
decamposition (parallelization) for a MIMD archi-
tecture. Version 1 of AHR, built at the National
Univ. of Mexico, uses up to 64 2-80's to jointly
execute a single Lisp program, each micro simul-
taneously executing some part of it, without the
programmer worrying of parallelism —in fact, the
progrmoruserneedsmtbeawaret)mthis
program is running in a parallel machine—.

Achieving the goal using a SIMD architecture.

A SDD architecture can achieve autanatic parallel
jzation in the cases normally designed for it
—namely, the same progran is executed by all
processors, each of them operating on different
data--.

Can a SIMD architecture achieve automatic
parallelization for casee where each processor
executes a different task? That ie, can we eimul-
taneously run different programe in the different
proceegore of a SIMD machine? NO, if we want to
maintain full speed (full use) of all processors.
YES, with some degradation in the degree of
parallelism.

This describes a method which performs
automatic parallelization upon & (pure) Lisp
program, breaking it into several parts, one for
each processor of & SIMD architecture. Each of
these parts is a different program —a different
execution flow—. These different programs are,
nevertheless, executed in parallel in the SIMD
machine. In order to achieve this, the method
uses (a) node scheduling; (b) node exportation;
(c) results exportation. The most important of
unseismdesdxedulirq,Mﬁ_rstallshnilar
nodes of the name or function type are collected,
and later they are executed in the normal SIMD
mode.

Software conversion of a SIMD into a MIMD archi-
tecture. Smwmmemmaswm
behave like a MIMD AHR machine when executing
arbitrary Lisp programs, it is clear that we can
use a SIMD architecture for parallel execution of

ARTAGA 56

a single Lisp program. By this we do not mean
that such Lisp program is replicated in the n
processors of the SIMD machine and put to work
simultaneously upon different data. We mean that
such a Lisp prograom is automatically partitioned

inte different independent but interacting portions

(n of them), and the nodes of each portion are
executed in suck a way that (generally) all the n
processors are executing [necesearily the same
node, althougt ™ wupon different data) simultaneous-
Ly,

Possible defficiencies of the approach are

(a) the amount of overhead (book-keeping, system
and administrative chores, and operating
system overhead) versus the amount of effec-
tive camputations. :

(b) the amount of time that same of the n

processors remain idle, while the remaining
processors are executing some node. This may
be the case if some of the n processors lack
node "CONS" [for instance] to execute; thus,
they will remain idle while the rest proceed
to OONS execution.

The different sections of this paper. while the
first section explains what is automatic parallel-
ization, the second tells us how to achieve it
using a MIMD architecture, and gives some descrip-
tion of the AHR computer built at the National
University of Mexico in 1981 under these princi-
ples. The third section outlines the solution for
applying the same approach to a SIMD machine. The
last section gives account of the conversion
(using only software) of "PS-2000", a SIMD proc-
essor, intc & device capable of automatic
parallelization, which also mimics the behavior of
the AHR machine, in its capability to execute in
parallel different parts of a single program.

What is Automatic Parallelization?

With the advent of cheap computing power, it
is reasonable to produce architectures where
several processors are running simultanecusly, col-
laborating in the cammon execution of a program.
On the other hand, software development is still
expensive. For a multiprocessor having n process
ing elements (called processors), to have to write
n different programs, plus n * (n-1)/2 synchroni-
zations, plus scheduling, etc., is uneconomical
from the point of view of programmer productivity.
Thus, practical use of multiprocessors achieves
one of the following forms:

(1) the programmer writes one program, and all
the n processors execute this same program,
although upon different data. At any given
time, all the processors are executing exact-
ly the same instruction (albeit same of them
may skip the instruction, becoming idle
during its execution). This solution has
been popular for application to numeric
matrices and vectors, and has caused the
development of SIMD (singleinstruction, mul-
tiple data) architectures. To be efficient,
all the n processors must be active most of
the time. This limits the algorithms for
SIMD architectures to be data-independent;

otherwise [as later explained] same or much

parallelisn —hence, efficiency— is lost.
(2) the programmer writes one program, which is
automatically decomposed (by the system) in
small parts and given to a pipeline to exe-
cute [8]. This approach is fruitful, but
useful mainly when the same algorithm has to
be applied to a large collection, or vector,
of similar data.
(3) several small programs are given to a MIMD
machine, and each processor executes one of
them. This is possible when these programs
interact nothing or little with each other,
since the interactions must be explicitly
considered by the programmers. This approach
is useful specially when each program is
independent (does not need to interact), but
needs access to same camon data or resource
(special processor). As example, we have the
Tandem multiprocessor (10] system.
(4) the user writes one program, which is auto—
matically decomposed (by the system) into n
different parts, one for each processor; the
system (and not the programmer) also takes
care of synchronization, scheduling, etc.,
associated with these parts. The
may be unaware of the parallel environment.
The parts are run in parallel by the multi-
processor .

To the tasks performed by the system in (4), we
call automatic parallelization. It can be
achieved using a MIMD architecture, because the n
parts which result from the autamatic decomposi-
tion will be different from each other, thus
necessarily requiring [we thought at first] a MIMD
architecture, where a plurality of instruction
flows may be achieved.

As it turns out, it is also possible to
execute these different parts using a SIMD archi-
tecture! How this is possible, will be explained
later.

Use of applicative languages. Pure Lisp. If we
remove fram Lisp all the iterative parts (prog,
goto, labels) and assignments (set, setg) we end
up with pure Lisp, strictly applicative. Recur-
sion is still there; iteration has dissappeared.

Applicative languages are specially useful
for the task (4) above and for autamatic parallel-
ization, because evaluation (the replacement of an
expression in Lisp by another having the same
value; for instance (plus 3 5) gets replaced by 8)
can then be performed in parallel. Data flow
machines and applicative machines are then exam-
ples of (4) in autamatic parallelization. The AHR
machine [5] can be viewed as a kind of data flow
machine.

Automatic Parallelization Using the AHR Machine

Outline of our approach. Account is given of our
approach using the AHR machine, of MIMD type.

(1) -Samehow, the program to be evaluated is con-
verted into node form and stored into the
active memory (or grill) of the AHR machine
(Figure 'The AHR Machine'). For instance,
(OONS (LIST X Y (CDR 2Z) W) (CAR X)) is to be
stored in the grill as

cons

1187 cae
‘)
VAR VAR CDF AN VAR
° ° 3 o
o
x Y - >

Each square box represents a node. Each node has,
among, others, fields for function name, space for
arguments, field for "pointer to my father", and
field "number of arguments not yet evaluated"”, or
NANE. Those nodes with nane = 0 are ready for
evaluation.

VARIADLL MEMORY

LISP PROCESSORS
TSULY

5

NICH SPEED BUS TO LISP PROCESSORS

=

PASSIVE MEMOPRY

Figure "The AHR Machine"”
Lisp processor 2 is ready to accept more work.
. | The distributor fetches a node (to be evaluated)
] from the fifo and sends it to processor 2, while
accepting the results of the previous evaluation _
performed by such processor. That result is
stored in the grill, in a place indicated in the
destination address of the result.

Such exchange of new work—previous result is per
formed at each cycle of the distributor.

The Lisp processors also have access (connections
not shown) to the variable and passive memories.

The AHR machine cammunicates with the host com-

puter by linking the passive memory of AHR to the
L-lnnj.n!nsrtsxyoft.hehost.

39

(2)

(3)

(4)

(5)

(6)

The AHR machine is a MIMD architecture formed
by n (up to 64) processors. Each of them is
called a Lisp processor, since it possesses
in its local memory a Lisp interpreter writ-
ten in 2-80 assembly language [3). Inciden-
tally, note that all the processors have the
same 2-80 program, namely the Lisp interpret-
er. But, in general, each will be executing
(evaluating) a different Lisp node —a differ
ent part of the user program—.

At the start of the execution (as well as in
any other instant in time), the Lisp process-
or looks into the grill for nodes ready for
evaluation [those with nane =0] [11]. Each
Lisp processor is either busy evaluating same
previous node or looking for work (a new node
with nane = 0) to do [12]. We can think that
a Lisp processor "attaches" itself to a node
with nane = 0, and begins to process it.
First, the node is marked "under process", to
prevent other processors from wanting to
execute it. Using the field "function name"
of the node [actually, a number], a dispatch
is done to the appropriate code that handles
the Lisp primitive which the node represents.
Nodes with nane = 0, being ready for evalua-
tion, have all their arguments already evalua
ted, and inside the node.

While evaluation is in progress, another Lisp
processors are simultaneously evaluating
another nodes, no one being aware of what the
others are doing. No message interchange
takes place. No explicit synchronization is
necessary, no semaphores, scheduling, etc.,
are placed upon the shoulders of the program-
mer.

After a processor completes evaluation of its
node, it places its results into the corres-
ponding slot of the node which is the father
of the node just evaluated [13]. It also
decrements the nane of the father (since the
father has one legs argument without evalua-
tion). 1If such nane becomes 0, it also
registers the father in the fifo (See figure
‘The AHR Machine'), meaning that the father
is now ready for evaluation.

Then, the processor reguests additional work
(a new node), thus initiating a new step (3).

The machine gradually evaluates the tree from
the leaves towards the root, or the Lisp

‘expression fram the inside to the outside,
. until the tree —the program— has became a

single result. Execution has finished. At
this point, all processors are waiting,
requesting 'more work to do', but there is
mone. The fifo (list of nodes ready for
evaluation) is empty.

Rewrsxmistmﬂledmasuulumm,

rresponding to it.
makes the tree grow. [3,4] give details.

Input/output is handled through a window
that maps part of the address space of the

AHR machine into (part of) the address space
of the hoet machine [4). Thus, the AHR ma-
chine can be thought of as a memory-to-memory
processor, as a back-end processor, or as an
“intelligent peripheral device", into which
Lisp programs are written and from which
results or evaluations of such programs are
read by the host machine.

(7) The (serial) conversion of a source Lisp
program (with Ascii characters and lots of
parentheses) into the tree of step (1) is
performed by the host machine of step (6€),
through a loader from disk (in the host) into
the memory of the host, and via the window,
into the memcry of AHR. Printing of the
results, that is, conversion of a list (stor-
ed in AHR memory as list-cells) into a
sequence of Ascii characters, is also per-
formed (serially) by the host machine, which
accesses AHR memory via the window.

(8) Everything that is placed in the grill is in
the form of a tree of nodes, which will
eventually disappear, because it will be
transformed into a result. Thus, results can
not be kept in the grill. They are kept in
passive memory, another memory of the Lisp
machine, which also contains programs (writ-
ten in list notation, using list cells).
These programs can be later placed in the
grill, to be evaluated. Such copung is done
by EVAL, which transforms programs in cell
notation (in passive memory) into programs
in node notation (in the grill). You can
think of the programs residing in passive
memory as "master copies", which are neces-
sary since everything placed upon the grill
is destroyed, converted into a result, eva-
luated, or "cooked"; hence the same "grill".

Who places the master copies in passive me-
mory? The host machine, during input, as
explained in step 6, converting from Ascii in
to cell (list) structure.

(9) And, who performs EVAL in step 8? The very
Lisp processors, since EVAL is just another
Lisp primitive, with the main duty of trans-
porting a program (more likely, a piece of
it) from list notation in passive memory into
node notation in grill memory; leaving the
program in grill assures evaluation (by the
Lisp processors). Thus, EVAL can be perform-
ed in parallel: several processors can be
executing EVAL at the same time, most proba-
bly on different data.

The parts of the AHR machine. Having explained in
general the functioning of AHR, we now give a more
detailed description of its parts. Refer to
figure ‘The AHR Machine'.

The memories of the AHR machine are the grill or
active memory, where the programs to be executed
reside in node notation; the passive memory where
data (lists, atoms, numbers) and programs (master
copies) reside in list (cell) notation; and the

variables mermory, holding different stacks (a
tree of stacks, a cactus of stacks, a spaghetti
stack) relating variable names to their values.
Also, each Lisp processor has its local or private
memory, holding same workspace as well as the Lisp
interpreter, a collection of Lisp primitives writ-
ten in 2-80 assembly language.

Also, we have mentioned the fifo or blackboard, a
first-in first-out small memory associated to the
grill, bolding pointers to nodes in the grill with
nane = 0.

The active elements of AHR are the Lisp processors.
Each is an B-bit microcamputer, with its own local
memory. They perform the conversion from nodes in
the grill into results in passive memory, evalua-
ting nodes given to them by the distributor,
another active element. There may be up to 64
(this mutber can be easily expanded) Lisp process-—
ors. The distributor is a piece of hardware
(although in the first version of AHR, built in
1981, it was a micro with associated software)
that takes nodes ready for evaluation fram the
fifo and handles them to the Lisp processors when
they request additional work. It also takes
results already computed by the Lisp processors,
and stores them in the corresponding place in the
node of the father. Footnotes [12] and [13])
should now be clear.

The interconnection perte of AHR are the high speed
bus, linking the distributor with the Lisp
processors, and ing nodes (new work) and
results (old results); the ive bus and
variables bus (not shown in the figure), linking
the Lisp processors to passive and variables me-
mory; the window, connecting the passive memory
to the memory of the host machine. Also, used for
debugging and statistics gathering, AHR has the
slow speed bus (not shown in the figqure), linking
the Lisp processors directly to the host machine.

Advantages of the AHR architecture. Among the
advantages of AHR, we have:

* AHR achieves automatic parallelization for a
MIMD architecture.

* User unaware of parallel environment/execution.

* User does not have to split his programs into
parts.

-

Synchronization and subtasking automatically
done by the system --in fact, by the hardware--.

* No operating system is reguired for AHR.
* Incrementally expandible.

»

If a Lisp processor stops, AHR continues running
showing only slight degradation.

Current status of AHR machine. Version 1, having
five Lisp processors, was finished and operational
by the end of 1981 [5]., It fulfilled all the
premisses/expectations of the design [3]). The
machine was taken apart early in 1983, to allow
for additional design and construction of Version
2. However, Version 2 still has not started to be
built ($ shortage).

A sister of Version 1, built upon a PS-2000 SIMD
machine [6), to be described in this paper, was
designed [7) and is expected to be operational
soon, >

Autamatic Parallelization Using a SDMD Approach

It is now desired to perform automatic parallel-
ization in a SIMD architecture. By such architec-
ture is meant a collection of n processors, called
also processing elements (p.e.'s), which execute
the same instruction upon different data. Each
processor has its own private memory. A control
unit (c.u.) outside the n processors has the

following duties:

‘lb}DldUEpzogrmmbee)(emteibyulltt)e
processors.

* it fetches from c.u. memory the current instruc—
tion, decodes it and broadcasts it%all p.e.'s,
for simultaneous execution.

* it also executes c.u.'s instructions (mainly
scalar operations, as opposed to vector opera-
tions performed by the p.e.'s), which can be
done in parallel with p-e.'s instructions.

Input/output is complicated, but parallel paths
there exist to all p.e.'s. Generally, a modified
disk (head-per-track) is used. Usually, a SIMD
architecture is slave to a host computer.

Connectivity (what processor is to the right of,
or above which other) among processors can be

modified by execution of special c.u. instructions.

Once in a particular connection or configuration,
the p.e.'s can simultaneously execute instructions
such as "move data from your memory address x to
your neighbor at your left", and all of they cive
some information to their left neighbor. The best
example of a SIMD architecture is Illiac IV[1].

Algorithms best suited for SIMD machines. From
the above Gescription, it is easily seen that SIMD
machines will attain full speed when executing
programs

(a) that apply the same algorithm to different
colums (vectors, matrices) of data. For
instance, if a SIM has 64 processors, then
the same algorithm should be applied to 64
different collections of numbers; and

that 6o not depend on the data being proc-
essed. The algorithms (although, of course,
mot the results) should be data-independent.
For instance, the average of n numbers can
be expressed as an algorithm which does not
depend on the values of the numbers being
averaged. On the contrary, the sguare root
of a number may be computed by an algorithm
"a" that uses routine "b" to produce real
numbers, when the input is possitive or zero
but uses routine “c" to produce complex

(b)

numbers when the input is negative. Thus,
algorithm "a" is data-dependent.
Difficulties in a strai orward to

allelization. Data 1 can be
mﬁasmmm,mt\dthnhsun—
tial loss of speed. For instance, suppose we

4]

™

apply algorithm “"a" above to an input of 64 real
numbers, one in each p.e. Many of them (half, in
the average) will be positive or zero, so that
branch "b"oftheprogrmh&stobee:emteﬂby
the corresponding p.e.'s, while the otiers (those
having negative inputs) wait. After "b" is camplet -
ad, branch "c" of the program has to be executed

by the other p.e.'s, while the former p.e. 's wait.
Thus, in the average, parallelism is only n/2 ins-
tead of n. This gets worse if we have nested IF's.

There is another way to execute in parallel
data-dependent (which essentially means, differ-
ent) algorithms, which may possibly be more
efficient. A general idea of it is now given.

General Idea of the Solution

Static Part of Design

We are using in the PS-2000
all the standard data structures already in use in
Version 1 of AHR [5). Lists, arrays, fifo, stacks,
trees of stacks, etc.

Continuity of address space. On the other hand,
we had to make a careful design for pointers that
g0 outside the memory space of a processor, into
the memory space of another processor, of the con-
trol unit, or even of the host machine. This is
because the data stored in one processor differs
from the data stored in another processor. Not
only the data differs but, unlike the normal SIMD
case, the structure of the data is also different.
matis,inﬂmetypimlsn&)mse,eve:ypmeessor
hasﬂmesmarraystoredinutesmplace,begi_r_a
ning in the same local address, etc. The
possess different numerical values, when you visit
the same cell in different processor memories.
That is not the case of our design; in a
nemry,inlocatimxthm:ghxwmybemidim
an array; in another processor memory, in the same
lomt.ionsxthmughxd-ymlistsmybesitting.

The solution was to have pointers that span the
whole set of memories; part of the pointer is
interpreted as a number that indicates "proces-
sor number", control unit, host processor, etc.

In addition, use is made of the fact that certain
stmcu:msdomtpointw-fudsthe)nstprmsor_

Dynamic Part of Design

' The basic idea about how to place the AHR
architecture inside the PS-2000 architecture, was
to have the lists stored "globally" through all
memories. That is, there was not going to be
repetition of data. A given data resides in just
one place of the PS-2000. This requires, as men-
tioned, global pointers.

Then, each processor "analyzes" its local
memory, looking for nodes with nane = 0 and pro-
ceeds to their evaluation, substracts 1 from the
nane of the father, etc. [3,4,5].

Basic difficulty.

We soon hit the follow
dlffxm]ty- A

2 SIND mackine, one

somc data,

o Ligp c.r,‘:..s-
ane. Very santly, the SI.MD construction

req\nres that each and every processor perform

exactly the same instruction.

The solution found was, roughly described,
as follows: each processor will take notice (in
a local list with as many entry groups as there
are primitive Lisp operations) of what operations
are ready to be done (what nodes have nane = 0).
After this phase finishes, all the Lisp processors
proceed to execute all the CAR's that need to be
executed. Those processors having no CAR's or
only a few of them, will soon go idle. Then, all
the Lisp processors proceed to execute all the
CONS'es that need to be executed. And so on.

This solution will be described in same
detail below. Notice that this solution, togeth-
er with a scheduler (a program that samehow
decides what group of primitives to execute next,
and how many of them: how many CAR's, how many
ONS'es, etc.), effectively eonverts a SIMD
inic a MIND architecture.

&

The different execution flows. Each p.e. (there
are 64 of them in a PS-2000) runs a different
user program. Thus, there are as many different
Lisp programs as there are Lisp processors. Each
program or instruction flow is camposed of many
atamic operations. Each atamic operation (a node)
correspords to a Lisp primitive. Each instruction
flow is decamposed into its corresponding atamic
operations, or nodes. Of these, same have nane =
0, being ready for evaluation. Those nodes with
nane = 0 are inscribed into a list, during the
first part of the scheduler: a list of CAR's
ready for execution; a list of CDR's ready for
execution,

Distribution of a program into n subprograms. As
the program is caming from the host machine, it
is converted by the c.u. into node notation, and
spread over the different local memories of the
p.e.'s. This is possible, since global pointers
are employed. Thus, each p.e. will have,
initially, a few nodes with nane = 0 in its
memory, where evaluation will begin.

The function that spreads a program among the
memories of the p.e.’s has to have some careful
design. For the function (F (Gl x)
it is better if its sons (Gl x), (G2 y), (G3 2)
are placed in different processors, because then
they can be evaluated in parallel. But, when the
results are produced -~-let us call them rl, r2 and
r3--, we have (F rl r2 r3), but the results (the
sons of F) are in different processors than the
function F. Thus, the results have to be export-
ed to the processor possessing F. Hence, spread-
ing the arguments across the p.e.'s increases the
parallelism, but also increases the exportation
of results.

In the current implementation, the spreading
function places the first son in the same

(G2 y) (G3 z)),

42

processor as the father; each of the other sons
are placed in different processors. In the
example, F, Gl and x are placed in the same pro-
cessors, while (G2 y) goes in the second p.e., and
(G3 2) in a third.

The scheduler. The first part of the scheduler
siumply takes note of how many CAR's, how many
CDR's, etc., each Lisp processor has ready to
execute, and where they are located in local
memory. This information is collected in local
lists held in local memory of the p.e.'s. This
collection of information is done by the p.e.'s,
in parallel. Thus, each p.e. maintains a CAR-
fifo, a (R-fifo, a CONS-fifo, etc. One fifo for
each primitive function.

Then, the scheduler proceeds to ascertain the
best order of evaluation among the Lisp primitives.
Should it be first the CONS, then the CDR's then
the CAR's to be executed? Or should the order be
CAR-CONS-CDR, or what? This is not easy to
determine, we think. The execution first of CAR's
for instance, could give rise to many more CONses
(ready for evaluation) to appear. Then, the order
should be CAR-CONS. On the other hand, to be
looking for the cptimal ordering may consume more
machine time than the time saved. 1In the current
implementation [7], the most popular primitives
are executed first. This is to exploit the idea
that the most popular nodes will "free" additional
nodes for evaluation, which then will be evaluated
gratis, keeping all or most of the p.e.'s busy.
(14}

Then, the scheduler determines how many nodes
of each type to evaluate. How many CAR's, how
many CDR's, etc. For instance, suppose that after
phase 1, the distribution of the number of CAR
nodes ready for evaluation is 0, 0, 20, 9, 11, 10,
10, 20, assuming only eight processing elemts
To order 20 executions of CAR will keep only two
processors busy; two will never have work to do
(because they have no CARs) and four of them will
became idle at the middle in time. Perhaps would
have been better to order only 10 or 11 executions.
In this manner, the processors having 20 CARs
would have to wait for the next "CAR execution
cycle", leaving some CAR nodes unexecuted in this
cycle.

The scheduler makes the above determination
based in the count of phase 1, which is a static
count. For instance, knowing that a processor has
11 CAR's ready for execution really means that it
has at least 11, since during execution of another
primitives ——and even of the CAR's themselves—,
more CAR's ready for evaluation are likely to
appear.

Then, the scheduler proceeds tc the execution
(done by the p.e.'s) of the determined number of
primitive 1, then the determined number of primi-
tive 2, etc. That is, "execute 11 CAR's, then 23
CDR's, then 15 OONS'es, ..." 1In this phase, the
scheduler asks all the Lisp processors to execute
the same primitive function (or to remain idle),
although, of course, over different data.

After finishing the above, the scheduler
looks for more nodes with nane = 0, starting the
first part of another cycle. 1In general, the
execution of nodes with nane = 0 tends to make
zexo the nanes of their parents; in this way more
nodes with nane = 0 are produced.

The execution ends when the scheduler finds
(in its phase 1) no nodes with nanc = 0.

Node exportation. It often occurs that a proces-
sor needs to perform & primitive operation over
data which resides in another processor. Certain
primitive operations are capable of being perform
ed even if data resides elsewhere (for instance,
if the needed information is inside the global
pointer). Nevertheless, most primitive operations
need to be done "locally" that is, the processor
that owns the data should execute it. In order to
accamplish this, a node is exported to the
processor owning the data, if it ever happens that
such node is tried for execution, only to find
that its data is elsewhere. This is easier than
bringing the data to reside together with the node
that wants to manipulate it.

Exportation takes place in two phases:

» In phase el, a node to be exported is placed
in a "list of nodes which desire to be
exported”., Phase el occurs all the time.
Wnen it is impossible to perform an operation
signaled by a node, because its data is not
locally available, then "Phase el" is called,
which annotates this node into the list, and
the node is considered “formally exported".
(The node is still waiting for execution).

il In phase e2, exportation actually takes
place. All the p.e.'s use the inter-proces-
sor cammunication facilities, and all proceed
to exchange nodes.

After phase e2, nodes imported are considered
to "belong" to the importer processor, and we
are sure that it can handle them.

The main idea is: when you have a node, try
to do as much work as it is possible to per-
form locally; when you can't do any further
work, export it. But do not export it to any
processor; export it precisely to the
processor that owns the data that is "causing
the problem". 1In this way, we try to
guarantee that there are no nodes "perpetual-
ly circulating around processors" and getting
no attention from any of them. More details
in [7].

What happens if there is a function, (PLUS rl
r2 ... rn) that wants to add all its arguments
(already evaluated; shown as results ‘i)' but
every argument resides in different p.e.'s, so
that, no matter to whom you export the node PLUS,
it can not do anything about it? We believe that
this should not happen, if the following steps or
precautions are taken:

43

i provide Bpace in the node for fixed and
real numbers. This will solve the problem
with PLUE above.

Loy carefully design the primitives of the

language, sc that no one of them depends on
more than one “non-present" arguments (an

argument 1s not present if i1t needs more in
formation than that carried in the pointer).

o 1f necessary, decompose the primitives into
another primitives having dependency in at
most one "non-present" argument. This
decomposition can be done by & macro expen-
sor at loading time (performed by c.u. or
by the host computer). For instance, sup-
pose that the language has a primitive
(PLUSCAR x1 x2) that adds the CAR of list
%1 to the CAR of list x2. That is (PLUSCAR
A B), when A is (3 4) and B is (5 €), gives
a result of 8. Then A and B are “non-
present" arguments because, even if they are
already evaluated --their values being (3 4)
and (5 6) respectively--, the pointer to
(3 4) does not contain information about
"3". Then, PLUSCAR should be deleted as a
primitive, expanding it at lcading time into
something like (PLUS (CAR A) (CAR B)), or

- (PLUSS (CAR A)B). 1In this last case, PLUSS
has B as the only "non-present" argument,
and thus is still safe.

Bxportation of results. Once a node is evaluated,
its result is sent to the node higher up (to its
father) in the tree. If the node of the function
which is to receive the result is not in the same
processor as the node [that is, if the father of
a given result is in another processor], then the
result is exported (as a "results node", samething
similar to QUOTE) to the processor which has the
function node (the father).

HOW TO REPROGRAM A SIMD MACHINE TO MAKE IT BEHAVE
LIKE A MIMD

Reasons to change the philosophy of operation of
PS-2000. Although the way of working of a SIMD
ma is simple and well understood, we want to
change it to a MIMD machine "mode of operation”
due to the following reasons:

* In the MIMD case, we can have algorithms
that deperd on the data and even in this
case full parallelism is sustained.

i It is desired to do other operations, such
as symbol manipalation, instead of simple
numerical operations.

In addition, we have reasons for choosing the
PS-2000:

| it is the multicamputer designed, built and
available at the Institute of Control
Sciences, where this work was done.

» this camputer is widely available, commer-
cially, in the Soviet Union.

= It is a powerful camputer. Each of its 64
processors is a minicamputer both in speed,
in word size (24 b) and in memory size (64 K
words) .

In addition, we have reasons for choosing the AHR
camputer as the target architecture:

" the AHR machine works, and it has a proven
and sound design.

" the AHR machine is easy to program, differ-
ing in this from more conventional MIMD
machines.

X the AHR machine was built and existed at
IIMAS-UNAM (Mexico) and there was a great
deal of familiarity and experience with its
design, its architecture and its functioning.

% while doing design and construction of AHR,
same improvements came to mind, that were
postponecd to a later version. There was same
desire to bring these improvements and
variations into existence.

Only software was used to accomplish the change.
During the design and construction of AHR it was
soon learned that, if we have both the ability to
specify the hardware and the software (that is, if
the design engineers are allowed to change both
hardware and software), the resulting structure
is more easily tuned to requirements than if we
can specify or change only hardware (or only soft-
ware). Thus, it was our original idea to modify
both software and hardware of the PS-2000, in our
efforts to convert it into an AHR-like machine.
Nevertheless, this was not done. In fact, we did
not do any hardware change. We accamplished the
conversion using only programs —software, that
is--. The reasons for doing this rather contrived
design were:

* time. We had only two months to learn about
the PS-2000, to design the changes and to be-
gin implementing them. To have gone into the
detailed circuits of the machine, and through
the extensive documentation it possesses, would
have meant more additional efforts. Although
this, in return, would have produced a more
efficient result (a new PS-2000 running in AHR
mode more efficiently, faster than the current
machine) .

* portability. If we do any hardware changes to
our PS-2000, it ceases to be a PS-2000, in the
sense that it no longer behaves as its PS-2000
sisters installed elsewhere. To these sisters,
the same hardware changes would have to be done
in order to run in AHR-mode. Also, our PS-2000
may even stop running programs that were
previously running in an unmodified PS-2000.
Thus, it wae decided not to touch the hardware,
so as to

* allow our installed changes to run in any
PS-2000 machine;

* allow the PS-2000 to continue running gld
PS5-2000 programs.

General characteristics of the desian. The gen-
eral organization of the PS-2000 Lisp is such

that the input and the output routines reside in
the host machine, and the evaluation routines
reside in the PS-2000. The conseguences of this
organization are several. To begin with, the
host machine always retains the oblist (object
list); that is, the literal atoms. The PS-2000
has an indirect reference [not to be confused with
indirect addressing) to the elements of the oblist
by the fact that the first cells of the property
list in the P5-2000 reside at the same addresses
as the literal atoms in the host machine. Next,
the Lisp evaluation system, which includes EVAL,
resides completely in the PS-2000, and in parti-
cular in the memories of the c.u. Parallel :
execution of th Lisp primitives is achieved by the
p.e.'s. Other modules also reside in the memories
of the c.u., such as the interprocessors communi-
cation routines among the p.e.'s, the memory
management of the entire system, etc.

How a Lisp expression is evaluated. The process
for evaluating a Lisp expression is begun by a
user typing a Lisp expression. The input routine
that reads this expression (the Reader) in the
host, converts the character string representation
of the expression into an internal representation
consisting of nodes and pointers. Some syntatic
verification of the expression is performed by
the reader, such as balanced parentheses and the
like.

Then, the expression (in internal form) is
sent to the PS-2000 for evaluation. Upon arrival
in the PS-2000, the expression is spread over
several p.e.'s. The number of processors that
are required for evaluating the expression de-
pends upon the size of the expression and the
total number of processors that the PS-2000
configuration has. The expression is then eval-
uated in the PS-2000. Finally, the result of the
evaluation is sent back to the host machine. In
it, the result (a Lisp expression) is converted
back into a character string by the output
system (Printer).

Both the reader and printer are standard
Lisp input/output routines as found in sequential
machines. However, the evaluation process in the
PS-2000 is not standard. It works as follows:

The system continuously maintains a table
of the nodes to be processed. The table is or-
dered according to the so-called popularity of
the node function type. This means that the
table is a representation of the demand for nodes
to be processed; the nodes that have the most
entries in the table are considered first, the
nodes with next-to-the-most entries in the table
are considered second, and so on. The table is
updated at certain times during the processing,
but not after each node is processed. The table
resides in c.u.'s memory.

The popularity table is used by the system
to decide what node to process. Once this
decision has been made, the system transfers
control to the routine that evaluates such node.

The conseguence of this evaluation may be more
nodes, which may or may not be registered in their
respective fifos. Independently of whether new
nodes are created or not, the evaluation of the
oricinal node is finished, possibly temporarily,
and control is returned to the system. Then the
process begins over again by selecting a new node
to evaluate according to the popularity table.

It should be emphasized that much of the
process of getting the node out of the Grill and
evaluating it is done in parallel. However, if &
node is selected but a given p.e. does not have
such a node, then that p.e. waits until another
node function type, which the p.e. may have, is
be processed.

It has been mentioned before that an expres-
sion is loaded by spreading it over several
processors. The conseguence of this action is that
at the time z node is evaluated, the node may re-
quire one or more of its parameters to be accessed
because they reside outside the processor of the
node being evaluated. Therefore, the system
suspends the evaluation on the node temporarily
and registers the node to be exported to the
processor where the parameter resides. At some
time later, the node is exported, the parameter is
accessed and its value is used to help to evaluate
the node. If there are other parameters in other
processors, then the node is re-exported to the
processors of the parameters, and subseguently
evaluated. 1In the end, the node is evaluated,
and its result is sent to the father node (the node
above the evaluated node in the tree). And as in
the case of the parameters, if the father resides
in another processor, the result is exported to the
location of the father node.

As in the case of standard Lisps, the PS-2000
Lisp maintains its various memories by garbage
collection in parallel. This is done when the
cell lists are exhausted. Processing of Lisp
expressions is suspended until the free lists are
reconstructed again.

Other related work. Strong [9] analyzes the
problem of how to sequence (schedule) different
programs (flow graphs) residing in the processors
of & SIMD machine, so as to be optimally executed
by it. His solution has theoretical insights,
while ours is a "practical" bridge between two

CONCLUSTIONS

* It is possible to attain automatic paralleliza-
tion in a MIMD machine, as the AHR machine shows.

* It is possible to attain automatic paralleliza-
tion in a SIMD machine, as the emulation of AHR
by the PS-2000 shows. More over, this emlation
requires no hardware modification.

* The paper describes a procedure which enables
a SIMD architecture to execute (in parallel)
different programs, each one residing (as nodes)
in each processing element. Thus, it is
possible o minic the Eehsvior Gf a MIND madhine

45

using a SIMD architecture.

* The above execution seems to be rather
efficient, because we can know and control
(with the scheduler) how many processors are
going to be idle, during the execution of a
given type of node.

Recamendations for further work.

* Finish the ongoing implementation of the
scheduler, [7), and the parallel garbage
collector.

* Measure the efficiency of some critical parts:

* the % of time that some p.e.'s wait because
they lack the type of node being currently
executed;

* the & of time that the scheduler takes.
That is overhead due tc the schedulexr and to
handling the gueues of nodes --one gueue for
each Lisp primitive function--.

* Diminish, if needed, the overhead due to the
scheduler, by

* improving it through software changes and
theoretical considerations;

* transferring some time-consuming part of it
to hardware, inventing suitable machine
instructions for p.e.'s and c.u.

ACKNOWLEDGMENTS. We want to thank Professors
Herbert Freeman (USA) and Goffredo Pieroni (Italy)
for the opportunity to present this material at
the NATO Advanced Study Institute.

This paper is based on the work done [€,7] under
the Joint Research Agreement between the USSR
Academy of Sciences and CONACYT, the Nationzl Coun-
cil for Science and Technology (Mexico).

work herein described has partially supported by
CONACYT (Grants PVT EE NAL 81 1211 and 14112H22-044)

We acknowledge our institutions, the Institute
for Control Sciences and IIMAS-UNAM; specially the
members of the AHE project (5].

Finally, A. Guzmin acknowledges the fruitful
research environment provided at the Electrical
Engineering Department of CIEA-IPN by Profs. Juan
Gardufio (Dept. Head), Héctor Nava Jaimes (Director
of CIEA-IPN) and Dr. Manuel Ortega (Undersecretary
of Public Education for Technological Research,
Federal Govt. of Mexico).

REFERENCES

1 Bouknight, W.J., et al. The Illiac IV System,
Proc. JEEE 60 4 April 72 369-388.

2 Glushkov, V.M., et al. Recursive machines and
computing technology. Proc. IFIP 19874, North
Holland, 65-70.

3 Guzmin A. A parallel heterarchical machine for
high level language processing. In Languages
and Architectures for Image Processing, M.J.B.
puff and S. Levialdi (eds). 1981 Academic Press,
230-244. Also in: Proc. 1981 Int'l Conf. on

Parallel Processing, 64-71.
4 Guzm&n, A. A heterarchical multi-processor Lisp

machine. Proc. 1981 1EEE Workshop on Computer
Architecture for Fattern Analysis and lImage Data
base Management. I1EEE Publication B1CH-1697-2,
pages 309-317.

5 Guzmin A., and Norkin, K. The design and construc
tion of a parallel heterarchical machine: final
report of phase 1 of the ARH Project. Technical
Report AHR-82-21, AHR Lab, IIMAS, Nat'l Univ. of
Mexico 1982.

6 Guzmén, A., Gerzso, M., Norkin, K., and Kuprianov
B. The P5-2000 SIMD computer: technical descrip-
tion and instruction set. Tech. Report AHR-B2-
23, AHR Laboratory IIMAS. Nat'l Univ. of Mexico
1982,

7 Guzmén, A., Gerzso, M., Norkin, K., and Vilenkin,
S.¥. Functional design of Lisp interpreter for
the PS-2000 SIMD computer. Technical Report
AHR-B2-24, IIMAS, Nat'l University of Mexico,
1983.

8 Russell, R.M. The Cray-1 computer system C ACM
21 1 Jan 78, 63-72.

9 Strong, H.R. Vector execution of flow graphs
J ACM 31 1 Jan 83 186-196.

10Tandem NonStop II systemdescription manual, Vols
1 and 2. P/N B2077 Tandem Computers Inc. Cuper-
tino Ca, USA. April 1981.

11Glushkow [2) postulated this search. To avoid it,
AHR uses a fifo holding nodes ready for evalua-
tion; they are handed out by the distributor.

12The Lisp processor does not actually look for more
work to do; instead, it just "signals" to the
distributor that it wants more work; the distri
butor accesses the fifo and provides a new node
to the processor.

13Actually, the Lisp processor just requests that
thing to the distributor, which actually does
the placement of the result into the father, as
well as the decrementing of the nane of the
father and its optional inscription in the fifo.

14To give an example, let us suppose that the
scheduler has just run its first part and it
counted 12, 14, 7, 9, 10,... CAR's and 5, 8, 2,
4, 6,... CONS'es, in processors 1, 2, 3, 4, S,
+.... Using this information, it decides to
go through 10 (parallel) executions of CAR's
and € (parallel) evaluation of CONS'es, in that
order. Let us suppose that the evaluation of
the CAR's has generated 2, 1, 3, 2, 0,...
additional CONS'es ready for evaluation. That
is, there are new 7, 9, 5, 6,6,... CONS'es ready.
When coming to the evaluation of the CONS'es
[which was already decided to be 6], each
processor evaluates 6 CONS'es (or less, if it
had fewer ready). Efficiency was lost only in
processor 3 (who evaluated 5 CONS'es and wasted
one CONS evaluation cycle), as opposed to the
case when nc additional CONSES were made ready.
In this last hypothetical case, since the CONS
count remained at 5, 8, 2, 4, 6, ..., proces-
sors 1, 3, 4, ... would be below 100%
efficiency. The example shows that, without
spending additional computing time, the
additional CONS'es made ready by the CAR
evaluations, improved the efficiency of every
processor who had fewer CONS'es that the number
(six, in our example) of executions chosen by
the scheduler.

Those processors with 6 or more CONS'es did not

improve their efficiency; it deteriorated
neither: all of them remained busy during the
6 executions of CONS'es, and efficiency was 100%
whether more CONS'es appeard or not for those
PIocessors.

Between a scheduler intervention and the next,
what is said for CAR's with respect to CONS'es
is also true of CAR's for any other Lisp
primitives: the execution of primitive 7 will
improve the efficiency of execution of primitive
J. if J is executed at any time (between two
consecutive scheduler interventions) after 7.
Thus, the popular primitives should be executed
first. T

